

 Molecular Mass (Molar Mass, Molecular weight) The molecular mass of a compound is the sum of the atomic masses of the atoms in the molecules that form these compounds. Calculate the molecular mass of the sugar molecule found in cane sugar (C₁₂H₂₂O₁₁). 									
	Atom	Symbol	Number of atoms	Mass of one atom	Total mass (amu)				
	Carbon	С	12	12.011 amu	12 x 12.011	144.132			
н	ydrogen	н	22	1.0079 amu	22 x (1.0079)	22.174			
	Oxygen	0	11	15.9994 amu	11 x (15.9994)	175.993			
						342.299			
			CHEMIS		RSTUDENTS				

• Use the formula: $\begin{aligned}
& \max_{mass} of(H_{2}O) = \left(\frac{\max_{O} of(O_{2})}{MO|ar \max_{O} of(O_{2})}\right) x \left(\frac{2(H_{2}O)}{1(O_{2})}\right) x Mo|ar \max_{O} of(H_{2}O) \\
& \max_{O} of(H_{2}O) = \left(\frac{7.0g}{32g/mole}\right) x \left(\frac{2(H_{2}O)}{1(O_{2})}\right) x 18g/mole \\
Mass of(H_{2}O) = 7.89 g \\
\end{aligned}$ Calculate the mass of chlorine that reacts with 4.770 g of hydrogen to form hydrogen chloride according the following equation: $\begin{aligned}
& H_{2} + Cl_{2} \rightarrow 2 HCl \\
& \text{Use the formula:} \\
\end{aligned}$ $\begin{aligned}
& M_{2} + Cl_{2} \rightarrow 2 HCl \\
& \max_{O} of(Cl_{2}) = \left(\frac{\max_{O} of(H_{2})}{MO|ar \max_{O} of(H_{2})}\right) x \left(\frac{1(H_{2})}{1(Cl_{2})}\right) x Mo|ar \max_{O} of(Cl_{2}) \\
& (H_{2}-TOO g) x (1(H_{2})) \\
& (H_{2}-TOO g) \\
\end{aligned}$

2.0 moles of NO were mixed with 2.0 moles of O_2 to react as:										
$2 NO(g) + O_2(g) \rightarrow 2 NO_2(g)$										
etermine the limiting reactant.										
o determine	determine the limiting reactant, use the following table:									
Stens	Stone 2NO 1.0									
1	No. of moles	2.0	2.0							
2	Coefficient	2	1							
3	Ratio	$\frac{2.0}{2} = 1.0$	$\frac{2.0}{1} = 2.0$							
4	Look for the smallest no.	Smallest	largest							
		ţ								
		R PREPARATORY YEAR STUDEN	ITS							

How many grams of SF_4 (g) can theoretically be prepared from 6.0 g of SCI_2 (g) and 35.0 g of NaF(s)?

 $3 \text{ SCl}_2(g) + 4 \text{ NaF}(s) \rightarrow \text{ SF}_4(g) + \text{ S}_2 \text{Cl}_2(l) + 4 \text{ NaCl}(s)$

- Step 1: determine the limiting reactant

Steps		3 SCl ₂	4 NaF
1	Mass /g	6.0	35.0
2	Molar mass (g/mole)	103.0	42.0
3	No. of moles = $\frac{\text{mass}}{\text{molar mass}}$	$\frac{6.0}{103.0}$ =0.06	$\frac{35.0}{42.0}$ =0.83
4	Coefficient	3	4
5	Ratio	$\frac{0.06}{2} = 0.03$	$\frac{0.83}{4} = 0.21$
6	Look for the smallest no.	smallest	largest

SCl₂ is the limiting reactant

CHEMISTRY FOR PREPARATORY YEAR STUDEN

